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Matching the High Momentum Modes in a Truncated Determinant
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Within a truncated determinant algorithm, two alternatives are discussed for including systematically the

remaining ultraviolet modes. Evidence is presented that these modes are accurately described by an e�ective

action involving only small Wilson loops.

1. Introduction

Because QCD in four dimensions is renormal-
izable, not super-renormalizable, the 
uctuations
of the fermion determinant are signi�cant at all
physical scales. Fortunately the short distance
behaviour of QCD is very well understood. In
particular, we know that for su�ciently high mo-
mentum scales this physics should be accurately
described by an improved gauge action.
In the truncated determinant algorithm[1], the

fermion determinant is separated into two pieces

lndetH = [Tr lnH]low � + [Tr lnH]high � (1)

where the lowest ncut eigenvalues are directly cal-
culated and included in the Monte Carlo updat-
ing procedure. The higher eigenvalues can be in-
cluded in the Monte Carlo by some approxima-
tion that matches onto the low eigenvalue results
without gaps or double counting, is controlled and
becomes exact in the continuum limit.
Two numerical methods suggest themselves for

calculating the high eigenvalues: (1)The multi-
boson approach of L�uscher[2]. (2)Using a small
number of gauge loops to model the determinant
as proposed by Sexton and Weingarten [3], and
Irving and Sexton [4].

�Presenter

2. Matching onto the Multiboson Method

One method to compute the high eigenvalues
which is guaranteed to succeed is the multiboson
approach of L�uscher[2]. De�ne

Peff (U ) � [det(D +m)]nf exp (�Sg(U )) (2)

and

H = 
5(D + m)=[cm(8 +m)] (cm � 1) (3)

where cm is chosen so that the eigenvalues of H
are in the interval (�1; 1). L�uscher chooses a se-
quence of polynomialsPn(s) of even degree n such
that

lim
n!1

Pn(s) = 1=s for all 0 < s � 1 (4)

then for nf = 2

detH2 = lim
n!1

[detPn(H
2)]�1 (5)

Choose polynomials such that complex roots
z1 : : : zn come in complex conjugate pairs (non
real) so that

p
z = �+ i�. Then

detH2 = lim
n!1

nY
k=1

det[(H � �k)
2 + �2k]

�1 (6)

Hence we can write

Peff (U ) = lim
n!1

1

Zb

Z
D�D�y exp�(Sg + Sb) (7)
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where the bosonic action is given by

Sb =
nX

k=1

X
x

j(H � �k)�k(x)j2 + �2j�k(x)j2: (8)

L�uscher used Chebyshev polynomials to estimate
how many boson �elds (nb) are required to repre-
sent the original action to a �xed accuracy in the
range (� < s � 1) The error is given by[2]:

jR(s)j � 2(
1�p�
1 +

p
�
)nb+1: (9)

Therefore, the convergence is exponential with
rate 2

p
� as nb !1.

A practical problem with this multiboson
method is that it requires an increasingly large
number of boson �elds as the quark mass be-
comes lighter. As mq ! 0, we must take � ! 0,
but to obtain a �xed level of accuracy we must
hold 2

p
�nb �xed and hence nb increases without

bound.
However the multiboson method matches

nicely onto the calculation of low eigenvalues.
This was �rst suggested by Alexandrou et.al.[5].
In the truncated determinant method, the cuto�
� for the multiboson method is set by the highest
eigenvalue of H2 which is explicitly included in
the low end calculations. Hence it does not ex-
plode as the quark mass goes to zero. The combi-
nation of methods remain accurate for all quark
masses. For example, for � = 5.9 on a 123x24 lat-
tice with direct inclusion of the lowest 100 eigen-
values, the associated cuto� for the multiboson
simulation of the high eigenvalues is

p
� � 0.035

independent of the light quark mass.
Furthermore, the error associated with the in-

accurate behaviour of the polynomial �t in the
range 0 < s < � can be corrected as low eigenval-
ues are computed for every con�guration update.
We obtain a reweighting term,

�Sb =
ncutX
i=1

ln (�2iP (�
2
i )) (10)

which can be included to eliminate errors in the
region 0 < s � �.
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Figure 1. Comparison of (Tr lnH)high� (dashed
line) and best �t (up to 6 links) e�ective gauge
action (open circles) for 75 gauge con�gurations.

3. Matching onto Small Loops

Using the multiboson method for the high end
of the determinant satis�es all our requirements
and completes the algorithm. However it may
be possible to reduce the total required computa-
tions even further using a more physical approach
to the high eigenvalues. Consider how many of
the high eigenvalues actually have physical infor-
mation and are not just lattice artifacts. For ex-
ample, for a 123x24 lattice with � = 5.9 and � =
.1587 there are 497,664 total eigenvalues of the
Wilson-Dirac operator; while for a high energy
cuto� of 1GeV we have approximately 1500 eigen-
values (0.3%). For a �xed volume V and quark
mass mq a decreasing fraction of the eigenvalues
are below a �xed physical scale as � !1. There-
fore, most of the range of large s �t in L�uscher's
multiboson method is physically unimportant.
This suggests a more physically motivated

method for dealing with the high eigenvalue part
of the fermion determinant in which one approx-
imates the ultraviolet contribution to the quark
determinant with an e�ective gauge action:

[Tr lnH]high � �
imaxX
i=0

�iLi (11)

where each Li is a set of gauge links which form
a closed path. The natural expansion is in the
number of links. For zero links L0 is just a con-
stant, for four links we have a plaquette, and six
links give the three terms found in considerations
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of improved gauge actions [6].
This idea was studied in detail by Irving and

Sexton[4]. These studies were done on a 64 lat-
tice at � = 5.7 with Hybrid Monte-Carlo full QCD
simulations (with a heavy sea quark). Their re-
sults were rather discouraging. It was hard to get
a good approximation to the determinant with a
closed set of loops and they needed large loops to
even approach a reasonable �t[4].
There are however two important di�erences

between their study and our situation. First, they
simulated the whole determinant, while here we
only need to approximate the eigenvalues above
some cuto�. Hence we would expect the small
loops to dominate at least for su�ciently high
cuto�. Second, they used an approximate pro-
cedure to estimate stochastically the logarithm
of the determinant needed, while we are exactly
computing all eigenvalues for this study. It turns
out that these di�erences are critical, as using
approximately the same lattices (and with even
lighter quarks) we �nd an excellent approxima-
tion to the high end with only small loops.
We generated a set of 75 con�gurations on a 64

lattice at � = 5.7 and � = .1685. We included
the lowest 30 eigenvalues (which corresponds to
a physical cuto� of approximately '350 Mev) in
the Monte Carlo accept/reject step in the gener-
ation of these independent con�gurations.
Considering only the high eigenvalues, an ex-

cellent �t to the 
uctuations is obtained includ-
ing four and six link closed loops. The variance of
the �t is 0.265. The comparison between the 
uc-
tuations in the exact (St) and approximate (Sa)
actions for the high eigenvalue piece is shown in
Fig 1. As expected, if only the plaquette term
is included the variance is larger (2.25) and we
must move the low eigenvalue cuto� to N = 50
(� 700 MeV) to reduce the variance below one.
The results for various cuto�s and terms included
are shown in Table 1.
The linear combination (.46,-.55,.04,.70,.03)

for (plaquette,rectangle,chair,polygon,wilsonline)
gives the best �t to the high eigenvalues of the
quark determinant (with ncut = 30). The con-
�guration to con�guration variations of the indi-
vidual 6-link terms are highly correlated. This
is to be expected since these three terms are not

n� � 4 links 6 links
cut (MeV) (with WL)
0 0 4.98 1.074 (0.835)
�15 340 2.25 0.2652 (0.233)
�50 700 0.940 0.0564 (0.0491)
�250 1,210 0.0733 0.0695 (0.0641)
�1250 2,220 0.138 0.0198 (0.0180)

Table 1
Variance (< (Sa � St)2 >1=2) of �t to high eigen-
values of the quark determinant by various sets
of small gauge loops (WL denotes a Wilson line).

independent.
The coe�cients of the e�ective action should

be independent of the physical volume with other
physical parameters held constant. We are re-
peating this study for an (84) lattice. The prelim-
inary study on 41 con�gurations gives the same �t
parameters within the statistical accuracy. With
ncut = 120 (� � 350MeV) the variance is 0.52.
Although more study is required, this second

method looks very attractive for dealing with the
high end of the fermion determinant in full QCD
with light dynamical quarks. Simulations would
be performed by including the predetermined ef-
fective gauge action Sa in the gauge updates and
computing the infrared part of the determinant
as in the truncated determinant simulations.
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